Full of Spirit: Designing Multi-Spirit Distilleries

James Ludford-Brooks,
Briggs of Burton
Quickly – Who are Briggs of Burton?

- US Engineering Company
 - Equipment Design and Manufacturing
 - Project Management
 - Process Design
 - Health and Safety
- Long history working in the brewing and distilling industries
- Head office in the home of brewing
 - Burton on Trent, UK
Briggs – Distilling
Distilled Spirits Market

- Markets shift:
 - Focus on modular and flexible systems
 - Capable of producing a range of spirits under one roof
 - Premiumisation:
 - Malts
 - “Grain-to-Glass”
 - “Single Estate”

- Cross-over from Craft Brewing
 - Diversification
 - Excess wort production for spirits
Talk Outline

Processes to make these:

- Whiskies
 - American
 - Bourbon
 - Single Malt
- Scotch
 - Single Malt
 - Grain
- Irish
 - Pot Still
- Neutral Spirit
 - Gin
 - Vodka

Grain Processing:

- Grain Cooking
- Mashing / Lautering
- Fermentation
- Distillation
- Column
- Pot

“Brewstilleries?”
Grain Processing
Grain – Alcohol Yields

<table>
<thead>
<tr>
<th>Starch</th>
<th>Alcohol Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L / Te</td>
</tr>
<tr>
<td>Maize (Corn)</td>
<td>387</td>
</tr>
<tr>
<td>Barley</td>
<td></td>
</tr>
<tr>
<td>Malted Barley</td>
<td>379</td>
</tr>
<tr>
<td>Wheat</td>
<td>334</td>
</tr>
<tr>
<td>Rye</td>
<td>321</td>
</tr>
<tr>
<td>Oats</td>
<td>278</td>
</tr>
<tr>
<td>Rice</td>
<td></td>
</tr>
<tr>
<td>Potato</td>
<td></td>
</tr>
</tbody>
</table>
Mashing – Starch Gelatinization Temp.

<table>
<thead>
<tr>
<th>Starch</th>
<th>Gelatinization Temp. Range</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize (Corn)</td>
<td></td>
<td>62 – 77</td>
<td>143 – 171</td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td>60 – 62</td>
<td>140 – 144</td>
</tr>
<tr>
<td>Malted Barley</td>
<td></td>
<td>64 – 67</td>
<td>147 – 153</td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td>52 – 66</td>
<td>126 – 151</td>
</tr>
<tr>
<td>Rye</td>
<td></td>
<td>49 – 61</td>
<td>120 – 142</td>
</tr>
<tr>
<td>Oats</td>
<td></td>
<td>52 – 64</td>
<td>126 – 147</td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td>61 – 82</td>
<td>142 – 180</td>
</tr>
<tr>
<td>Potato</td>
<td></td>
<td>56 – 71</td>
<td>133 – 160</td>
</tr>
</tbody>
</table>

Source: Briggs et al., Brewing Science and Practice, page 38.
Example – Mash Bills

<table>
<thead>
<tr>
<th></th>
<th>Bourbon</th>
<th>Tennessee</th>
<th>Rye</th>
<th>Scotch Malt</th>
<th>Scotch Grain</th>
<th>Irish Pot</th>
<th>Neutral Spirit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize (Corn)</td>
<td>70</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Barley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>✓</td>
</tr>
<tr>
<td>Malted Barley</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>100</td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Rye</td>
<td>15</td>
<td>10</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Oats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Oats low yield but recognised as a filter aid
Mashing – American Whiskies

Grain Milling

- Not typically milled
 - Corn (Maize)
 - Buckwheat
 - Rice
 - Oats
- Milled
 - Barley
 - Wheat
 - Rye
- Using Hammer Mill or closed gap 4 Roller mill

Mashing Process

Mash Conversion Vessel (MCV) or pot still
- “All Grains” = No husk separation
- Atmospheric vessel (MCV)
- Backset ‘Sour mash’
 - 10% Mash Water vol.
- MCV Cooling
 - Mash Water – (Single Vessel Decoction)
 - Malt addition
- Dual purpose jackets
 - heating (steam medium)
 - cooling (cooling water inlet).
- Mash Cooler
 - Heat recovery
 - Tubular or Wide gap Plate HEX

BRIGGS
Grain Cooking

Roller Mill → Malt Grist Case → Briggs Masher → Briggs Mash Conversion Vessel

Mash Coolers → Cold Water
Mashing – Grain Cooking
Grain Cooking / Mash Conversion Systems

Heating and Cooling

- Jacketed vessel
- Direct steam injection
 - Preference for clean steam generator
 - Avoid taint from boiler feed water
- Internal heating coil
 - Cleaning
Grain Cooking - Decoction Mashing Process (Rice)
Mashing – Scotch, Irish and Japanese Whiskies

Grain Milling

- Course grits requirement for malt
 - MCV / Lauter Tun
 - 4 roll mill
- Un-malted Barley
 - 4 roll mill with close gap setting
 - Or separate Hammer mill

Mashing Process

Options:

- 100% Malt Whiskey
 - Mashed directly to Lauter Tun
- Irish ‘Pot’ Still Whiskey
 - Malt and Barley
 - Mashed into Mash Vessel then transferred to Lauter Tun
- Clear Worts Obtained
- Wort Cooler
 - Heat recovery
 - Tubular or Wide gap Plate HEX
Distillery Lauter Tun

- Malted Barley
 - Malt Whiskies
 - American
 - Scotch
 - Irish
 - Japanese
- Husk forms filter bed
- Influence Wort Clarity
 - Clear (Beer)
 - Cloudy
Lautering
Grain Cooking + Lautering (Irish Style)

- Roller Mill
- Malt Grist Case
- Briggs Masher
- Briggs Mash Conversion Vessel
- Briggs Distillery Lauter Tun
- Mash/Sparge Weak worts Tanks
- Cold Water Coolers
- Cold Water
- Spent Grain
Distillery Lauter Tun - Operation

- Sparge weak worts to improve yield
- Question on payback at Craft Scale
- Without weak worts collection the mash in the Lauter Tun is thicker
Distillery - Mash Filter

- Design for high volume, Mash separation in the brewing industry
- Consistently clear wort
- Two in Scotland
 - Diageo Teaninich Distillery
 - InchDairnie Distillery
Fermentation

• Materials of construction
 • Wooden
 • Stainless Steel
• Variables (Control)
 • Time
 • Temperature
 • Yeast strain
 • % ABV
 • largely affected by extract yield
 • Foaming
 • Nitrogen Content (FAN)
 • Grains are FAN deficient
 • Compensated with Backset?
• Agitation
 • Grains In
• CO₂ = Asphyxiating
Distillation
Distillation

Wort / Wash

Steps:
• Fermentation
• Distillation

Source:
• Distillery
• From existing Brewery wort

Neutral Spirit

Steps:
• Vodka
 • Rectification
 • Filtering
• Gin
 • Infusion with botanicals
 • Rectification
Grain Whiskey Spirit (GWS)
Industrial Neutral Spirit Production

Primary columns – GWS

Secondary columns – GNS (Vodka)
Infused Spirits (Gin)
Brewstillery Concept
Distilling and Brewing – Quick Comparison

Distilling
- Malt
- Grain Cooking
 - Grains In
- Clear or Cloudy wort
- Not Boiled
 - Secondary Fermentation
- Weak Worts collection (optional)
- Distillers Yeast
 - Higher Temperature and %ABV
 - Single-Use

Brewing
- Malt
- Grain / Adjunct Cooking
 - Mash Separation
 - Lauter Tun / Mash Filter
- Clear Wort
- Wort boiled in Kettle
 - Increased Gravity
 - Hops added
- Yeast
 - Ale / Lager
 - Temperature and flocculation
 - Crop and re-pitch
Brewstillery Concept – Grain Whiskies

Briggs Masher

Briggs Lauter Tun

Mash Vessel

To FVs
Brewstillery Concept – Whiskies (Irish Style)
Brewstillery Concept – Distillation

- Briggs Kettle / Still
- Briggs Lauter Tun
- Spirit Condenser
- Seal pot
- From FVs

Spirit
Brewstillery Concept – Beer

- Briggs Masher
- Thermosyphon
- External Wort / Wash heater
- Briggs Kettle
- Briggs Lauter Tun
- Wort Coolers
- From FVs
- To FVs
- Spent Grain
Summary

Overview

Choice of spirits to make:
- Neutral Spirit Production
 - Vodka
 - Gin
- Whiskies
 - Cereal Cooker and Lauter Tun allows a wide range of whiskies to be produced
 - Similarities between malt whiskey distilleries and breweries
 - Process modifications allow production of both

Questions

- Make your own Neutral Spirit?
- Excess brewery wort, how to integrate into a distillery process?
Thanks

Any Questions?

Booth #107